
Journal of Sound and Vibration (1998) 215(2), 343–379
Article No. 981637

AN EXPERIMENTALLY VERIFIED NON-LINEAR
DAMPING MODEL FOR LARGE AMPLITUDE

RANDOM VIBRATION OF A
CLAMPED-CLAMPED BEAM

M. G  J. F. D

School of Engineering, The University of Sussex, Falmer, Brighton, BN1 9QT, England

(Received 2 December 1997, and in final form 30 March 1998)

An empirical non-linear damping model, for use with single-degree-of-freedom
clamped-clamped beam vibrations driven by band-limited white noise, is calibrated by
using large amplitude experimental measurements. To verify the model, two parameter
estimation methods are initially tested on simulated data using (1) the state variable filter,
and (2) a Markov based moment method—the moment method being preferred in this
particular application. Model verification with real data, then proceeds by using moment
based parameter estimation and finite element solutions of the stationary Fokker–Planck
equation, where deliberate attempts have been made to avoid excitation of higher modes.
By systematically building up from a simple linear to a three-term damping model,
comparison between measurement and prediction, via the calibrated model, shows excellent
agreement for probability density functions associated with the central beam displacement
up to a normalized non-linear beam amplitude ratio=7·0. But the subsequent comparisons
of measured and predicted extreme value exceedance probabilities up to a maximum
normalized amplitude ratio=10·0, using the same calibrated SDOF model, shows
significant differences, suggesting the occurrence of considerable non-linear coupling of
beam vibrations. This finding would suggest, for the case of forced random vibration of
a clamped-clamped beam, that a SDOF beam model is adequate for moderately large
amplitude prediction but wholly inadequate at very large amplitudes.
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1. INTRODUCTION

Large amplitude forced random vibration of clamped-clamped beams is important in
several areas of structural dynamics, especially for prediction of high stress levels in aircraft
panels exposed to high intensity acoustic loading. Although thermal effects may be crucial
in some studies, isothermal models are still important and by no means fully understood.
Large amplitude analysis of beams with immovable ends is initially complicated by
‘‘hardening’’ type geometric non-linearity which often proves too strong for linear
(Euler–Bernoulli) theory, justifying use of the more general Woinowsky–Krieger equation
[1] or use of nonlinear finite element models. The classical theory [1] can be usefully
employed in free vibration studies by using several advanced non-linear analysis methods
[2] although increasing emphasis is being placed on the FEM. In focusing discussion of
this vast subject, it is initially helpful to consider separate topics of free and forced response
prediction, beam damping, and combined acoustic-thermal loading.

Work on free vibration of nonlinear beams began with use of an elliptic integral [1] to
obtain natural frequencies for pinned beams with immovable ends. Atluri [3] identified four
main sources of non-linearity resulting respectively from (1) moderately large curvatures,
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(2) longitudinal elastic forces and displacements, (3) longitudinal inertia, and (4) rotary
inertia, confirming the effect of inertia for hinged beams as being of softening type. Mei
[4] explained extraordinary hardening effects reported for simply supported (non-slender)
beams with immovable ends, confirming that the effect of longitudinal displacement and
inertia (ELDI) gives a reduction in non-linearity. Two further controversial points were
examined by Singh et al. [5] to establish (i) whether axial strain should be included in the
strain energy equation, and (ii) whether strain displacement can be linearized. It was shown
that when axial strain is ignored, and strain displacement is linearized, a single harmonic
solution via the Duffing equation, yields exactly the same natural frequency as the
perturbation method, Rayleigh–Ritz, and elliptical integral when applied to corresponding
dynamic models where neither assumptions are made and where a multiple harmonic
solution is used. More recently Shi and Mei [6] have developed a finite element model
including a non-linear strain–displacement relation to obtain modal equations for large
amplitude beam motion. Their resulting system of equations can be reduced by using
(linear) normal coordinates to obtain coupled Duffing-type equations (via a route
considered much simpler than the classical Galerkin approach). Subsequent time-domain
solution (with appropriate initial conditions) gives accurate natural frequencies and
percentage participation from non-linear coupling, showing the number of degrees of
freedom needed for increasing beam amplitudes. At normalized beam amplitudes q3, for
example, at least two modes are considered needed for accurate frequency prediction. Lee
et al. [7] extended this FEM to non-isotropic plates explaining how initial conditions
should be chosen. Although the FEM looks set to grow in use, the accuracy of the classical
Woinowsky-Krieger–Galerkin approach has recently been confirmed for free vibration of
simply supported beams with immovable ends [8].

Forced vibration of non-linear beams has also received considerable attention, both for
frequency response and stability analysis with harmonic excitation, and for response
prediction with random forcing. Three early contributions include the work of Bennet and
Eisley [9] using a 3-mode model via Galerkin’s method to examine a damped beam with
concentrated harmonic force, the one-mode approximation by Tseng and Dugundji [10]
using Galerkin’s method and harmonic balance to obtain experimentally observed sub-
and super-harmonics for a clamped beam, and the work of Mei [11] using the matrix
displacement approach for non-linear analysis. Busby and Weingarten also used discrete
methods examining various non-linear beam problems including random response
prediction [12] using the method of equivalent linearization. More recently Takahashi [13]
has studied the stability of a harmonically excited clamped-clamped beam, also confirming
experimentally observed phenomena. And in a detailed experimental study of a clamped
beam with both harmonic and random excitation, Bennouna and White [14] showed that
there is considerable reduction in fatigue life owing to axial strain caused by non-linear
vibration. Mei and Decha-Umphai [15] confirmed, again for harmonically excited
(non-slender) beams with movable ends, that non-linearity is indeed of softening type, and
Benamar et al. [16] demonstrated that the curvature near the clamps of an harmonically
excited clamped beam, depends strongly on amplitude, bending strain being a highly
non-linear function of deflection. Recently Ribeiro and Petyt [17] have developed an
hierarchical FEM specifically to include higher mode contributions and damping, without
excessive increase in the number of DOF; this has been used mainly for stability and
response analysis of clamped beams, but also to examine the influence of model order.

Accurate prediction of large amplitude forced vibration of non-linear beams is
complicated by the need for good damping models, especially where several vibration
modes are driven simultaneously by broad-band random excitation. Since beam damping
levels are light, responses are critically controlled by the prevailing damping mechanism.
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Damping synthesis is not yet possible owing to complex interaction (including hysteresis
[18]) which prevents adequate separation into distinct components. Moreover,
aerodynamic damping of random vibration (which may contribute a significant part of the
total) cannot be accurately predicted by using classical fluid dynamics, so use of simpler
empirical models is justified. Early work on large amplitude beam damping by Smith et
al. [19] confirmed that linear damping in the Duffing equation was totally unsuitable.
Subsequent use of linear-plus-quadratic model by Baker et al. [20], for free decay responses
of a thin cantilever, has proved less useful in forced random vibration. A numerical study
by Bandstra [21] examined prediction errors resulting from use of linearized damping for
the models suggested in reference [20], concluding that none should in fact be linearized.
More recently, in an attempt to explain experimentally observed broadening of the strain
response peak and the increase in modal frequency of aircraft panels at high sound levels,
Mei and Prasad [22] used three-term nonlinear damping in a Duffing equation for
clamped-clamped beam vibrations showing that nonlinear damping contributes
significantly to broadening of the response peak, and to changes in the maximum
deflection, strain statistics and frequency for sound pressure levels q120 dB. In this study
use of linearized damping led to the conclusions that (i) nonlinear damping has a profound
effect on the fatigue life of panels above 120 dB, and (ii) more research on damping of
random vibration is needed.

Combined thermal-acoustic loading has recently been included in forced analysis by a
number of investigators including Chiang [23] and Wolfe [24]. Indeed Chen et al. [25]
approached the combined loading problem for clamped beams using an FEM, model
reduction, and statistical linearization to obtain (for the isothermal case) excellent
agreement in predicted normalized beam displacements when using 1- and 4-mode models,
but significantly less agreement when using a 1-mode model with FPK based predictions
(this implies a fully nonlinear SDOF model should be adequate here for moderate
amplitudes). But with combined thermal loading, there was excellent agreement between
the 1-mode, 4-mode and the FPK based predictions (implying here that a linear SDOF
model should be adequate).

In this paper we report large amplitude experimental measurements of clamped-clamped
beam vibrations used to establish whether a modified three-term damping model is
appropriate for use with a SDOF random vibration model. Two parameter estimation
methods were initially tested with simulated data, and subsequent predictions, which form
part of the verification, were obtained via appropriately matched finite element solutions
of the stationary FPK equation. By including all combinations of damping terms to expose
interactive behaviour, a gradual build-up to the specific three-term model was
demonstrated at response amplitude marginal density level. Furthermore, extreme value
predictions, which offer the most definitive verification of the same SDOF model are
compared with experimental measurements to establish, for band-limited white noise
excitation, the suitability of the model at very large amplitudes of vibration.

2. PREDICTION OF LARGE AMPLITUDE RESPONSE STATISTICS VIA A SDOF
FORCED RANDOM VIBRATION MODEL

We briefly outline here the use of the classical nonlinear beam model, extracting from
it—via Galerkin’s method—a single-degree-of-freedom model along similar lines as for
example in references [8, 10, 14, 22]. Attention will then turn to the choice of empirical
nonlinear damping obtained as a modification to the three-term model used in reference
[22], and the final part gives an overview of the prediction approach to marginal
probability density functions and extreme value statistics.
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Large amplitude vibrations of a clamped-clamped beam can be modelled by the
Woinowsky-Krieger equation [1],
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12W(x, t)
1t2 =P(x, t), (1)

upon assuming that rotary inertia and shear deflection are ignored, and that the beam of
length L and elastic modulus EI, with transverse deflection W(x, t), is subject to boundary
conditions: 1W/1x=W=0 at x=0 and x=L. Here, the initial tension is zero and the
inhomogeneous forcing term P(x, t) includes both a band-limited white noise source
(concentrated at some point on the beam) plus all other external forces, such as damping.
Of particular interest here is the central beam displacement w=W(L/2, t), or more
appropriately the normalized displacement ratio w/r which gives a measure of beam
nonlinearity [1], where r=zI/Ab (I is the second moment of area, and AB is the beam
sectional area).

If it is practically possible to construct a SDOF (discrete) beam vibration model from
equation (1), at least by imposing appropriate upper and lower limits on the noise
band-width, then this should allow an empirical damping model to be verified.
Construction of a SDOF model from equation (1) is approached by assuming a single
coordinate generalized beam displacement of the form

W(x, t)=f(x)z(t), (2)

where z(t) is an amplitude function (of time), and f(x) is an assumed displacement shape
function (of space). Substitution of equation (2) into equation (1) and application of
Galerkin’s method [22] gives
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This is equivalent to the undamped forced Duffing equation
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where f(t) is a form of generalized excitation and where the parameters v2
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Unfortunately the parameters v2
n and gv2

n given by equations (5) and (6) depend on the
unknown displacement shape function f(x), and this is one reason why there is interest
in the use of large amplitude free vibration mode shapes since these may resemble the
appropriate deflection shape function under particular forced conditions (such as for a
centrally positioned harmonic force where, for reasons of symmetry, nonlinear coupling
from a second mode for example, would not be expected [17]). Several approximate
methods [2] can be used to obtain nonlinear free vibration mode shapes, for example via
(i) postulating a time dependent solution with space dependent coefficients followed by use
of the harmonic balance method to construct a nonlinear boundary value problem for the
required coefficients, or (ii) using chosen space functions (e.g. linear mode shapes) followed
by Galerkin’s method to construct coupled nonlinear equations for the modal amplitude
time functions, handled then by a perturbation technique or method of normal forms, and
(iii) by generating normal modes directly from equation (1) by using the method of multiple
scales. Unfortunately use of a single free vibration mode shape (even when ELDI is
included) cannot possibly give consistent (stiffness) parameters under all forced vibration
conditions because changes in the position of a concentrated load for example, would be
expected to cause a change in the model parameters; equations (5) and (6) cannot take
this into account. Also under experimentally forced conditions, when using for example
an electromagnetic shaker, an unpredictably small but not insignificant part of the
measured dynamic properties may be attributable to influences of the shaker [24];
obviously this information also cannot be included within equations (5) and (6). Moreover
the whole question of the damping model, which is crucial for accurate response prediction,
remains to be included in the model. But damping is a major source of difficulty [22] since
this is made up from several nonlinear mechanisms either internal in origin (e.g. structural
or material) or external (viscous, acoustic, dry friction, etc.). These energy losses occur at
microscopic and macroscopic levels, and sometimes in the form of hysteresis. Suppose one
considers just one component alone, such as derived from viscous fluid forces for example;
these are particularly important for vibrating beams in air, and yet a good fluid drag model
under random vibration conditions is not yet available. Much use has therefore been made
of experimentally calibrated empirical models for both internal and fluid damping
mechanisms for use with relatively simple equations of motion. The simplest form of
damping is of course a linear model even though Bandstra [21] has demonstrated the
adverse effect of replacing Coulomb, fluid drag, and structural damping models with an
equivalent linear mechanism. To some extent this is borne out by the wide range of linear
damping factors which seem to be used for beam vibrations. In reference [10], for example,
a linear clamped-clamped beam damping factor of 0·6% critical was obtained from free
decay tests. By contrast 1·9% critical clamped beam damping (which was rightfully
reported with caution in reference [24]) was used in reference [17] to give amplitude
predictions of around half the maximum obtained experimentally. And in reference [25],
linear damping factors of 0·5% and 1% (for isothermal predictions) were compared with
experimental measurements showing that normalized response predictions were bounded
by these damping values. Clearly if damping is highly nonlinear, then accurate response
amplitude prediction will not be possible when using linear loss factors.
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In constructing a modified empirical beam damping model for use in a Duffing-type
equation, motivation is initially drawn from reference [25] and from the partial success (at
low intensities) of the model used by Smith et al. [19], in the form

C1ż+ a1z2ż, (7)

which was used for predicting clamped-clamped beam vibrations excited by sinusoidal
acoustic pressure. The success of this model would suggest this may actually form a good
basis for a new model if an appropriate extension can be found. In fact the extension is
derived here from the model used by Baker et al. [20], namely the well known empirical
viscous damping model

C1ż+ a2ż=ż=, (8)

which was very successful in modelling fluid damping of free decay responses of a thin
cantilever beam. On combining expressions (7) and (8), a seemingly simple model follows.
When this is inserted into the Duffing equation for a SDOF clamped-clamped beam
undergoing large amplitude vibration, one obtains

z̈+C1ż+ a1żz2 + a2z=ż=+v2
nz(1+ gz2)= f(t). (9)

Contrast this type of damping with the three-term model of the form c1ż+ c2żz2 + c3zż2

also used in a Duffing-type equation by Mei and Prasad [22] whose limitations for
clamped-clamped beam vibrations were clearly identified based on predictions obtained
with equivalent linearization. It would not be thought however that a seemingly subtle
difference from this three-term model would have a major impact—but this is not the case
as we will see in due course; in fact, all but the linear damping term in equation (9) seem
to interact in an unexpectedly complex way. Now since the stiffness parameters given by
equations (5) and (6) depend on the choice of displacement shape function, the only
practical way to obtain all of the parameters (C1, a1, a2, v2

n and g) is via direct calibration
by using experimentally measured data, it being assumed that this data can be processed
by a suitable parameter estimation technique. Fortunately one major advantage of
modelling the forcing term as a white noise process is that specific non-linear techniques
based on Markov process theory (via the FPK equation) can be used for obtaining
theoretical predictions of certain response statistics, as well as forming the basis for one
of the parameter estimation methods. The Markov approach to the statistics of interest,
namely marginal density functions and extreme values, is now outlined briefly.

2.1.         

   

With the external forcing function in equation (9) modelled as broad-band Gaussian
white noise excitation with intensity A, such that f(t)=Aw(t), where w(t) has unit
intensity, Markov process theory allows transition probability density functions to be
obtained via the Fokker–Planck (FPK) equation [26]. Solution of this equation can be used
to obtain marginal densities and (approximate) extreme value statistics. In particular the
stationary FPK equation associated with equation (9), is written as

1
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where n=2, B=2pAAT and p(z� ) is the stationary joint probability density function (jpdf)
subject to particular boundary (and normalization conditions). Since in general there are
no exact solutions of the FPK equation associated with equation (9), use of the finite



-  -  349

T 1

Parameter estimates via the SVF method using simulated data

Parameter estimates and % errors for reducing simulation step size*
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Target dt=0·002 s dt=0·001 s dt=0·0005 s
parameter ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

values Estimate % Error Estimate % Error Estimate % Error

a1 =0·812 1·05 29% 0·892 10% 0·888 9%
a2 =0·015 0·012 −19% 0·014 −8% 0·014 −5%

v2
n =20 835 19 771 −5% 20 275 −2% 20 483 −2%

gv2
n =3019 2061 −32% 2642 −12% 2845 −6%

Duration of sample=250 s (6875 cycles); large time step Dt=0·002 s
* Estimates shown are accurate to 3 d.p.; % error calculations use higher precision. The value A=200 is used

in the simulation.

element method (see, for example, reference [27]) offers a very accurate and efficient
approximation [28]. The unknown nodal values of probability pi are obtained via the FEM
by solving a (sparse) system of Nn ×Nn linear equations (where N is the number of nodes
used). The jpdf is integrated to obtain marginal density functions for displacement or
velocity variables, and also to obtain approximate extreme value statistics via the mean
threshold up crossing rate,

n+(uT )=g
+a

0

żp(uT , ż) dż, (11)

where use of the Poisson assumption [29] allows approximation of the extreme value
distribution function,

FM (uT )=prob {M(T)E uT}=e−n+(uT )T, (12)

which is then expressed in terms of the extreme-value exceedance probability:

P{M(T)e uT}=1−F(uT ). (13)

T 2

Parameter estimates via the Markov based moment method using simulated data

Parameter estimates and % errors using different sets of moment equations*
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

second and fourth second, fourth and second, fourth, sixth
Target order sixth order and eighth order

parameter ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
values Estimate % Error Estimate % Error Estimate % Error

15·6×10−6 A2 — 14·0×10−6 A2 — 12·8×10−6 A2 —
a1 =0·812 0·624 −23% 0·56 −31% 0·512 −36·9%

0·51×10−6 A2 — 0·53×10−6 A2 — 0·54×10−6 A2 —
a2 =0·015 0·020 +33% 0·021 +40% 0·022 +46·7%

v2
n =20 835 13 210 −36·5% 15 524 −25·4% 16 757 19·6%

gv2
n =3019 4692 +55·4% 3333 +10·4% 2523 16·4%

* Estimates are obtained from an average of 10 different segments of length 250 s (6875 cycles) with
Dt=0.002 s and dt=0.0005 s using an intensity value A=200 in the simulations.
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Figure 1. Evolution of nonlinear damping parameter estimate a1 by using (a) the SVF method, (b) the moment
method, for time intervals Dt=0·002 s and dt=0·002 s (worst case)—the target values are shown as the solid
line (——); estimated parameters by ×.

Detailed justification of the Poisson assumption and an assessment of the accuracy of this
FEM–FPK route to extreme value prediction has been fully examined in reference [28],
showing in fact, over a wide probability range, very good agreement with simulation for
oscillator models with nonlinear damping. Marginal densities and extreme values will be
predicted using this approach in section 5.

3. MATCHED PARAMETER ESTIMATION AND RESPONSE PREDICTION—
TESTING WITH SIMULATED DATA

Two parameter estimation techniques are tested here by using noise-free simulated data
to assess their suitability in verifying equation (9) when using experimentally generated
random data. Simulated data is useful because a good indication of the likely performance
and expected accuracy of parameter estimates with real data can be given, without any
of the uncertainty associated with the dynamic model. The specific purposes of these tests
are (i) to establish the sensitivity of parameter estimates to changes in the sampling rate,
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and (ii) to assess the quality of the predicted response statistics obtained when using the
dynamic model based on a set of estimated parameters. There are two reasons why
knowledge of the required sampling rate is important: first because the experimental data
acquisition system (see section 4) may have (as in our case) restricted storage capability
(1 Mbyte), such that only relatively short sections of time history can be obtained at
high frequency; second, the effect of sensitivity to sampling rate is important in order to
assess the impact of small but unwanted phase shifts which occur in simultaneous
measurements of force and response. When parameter estimation based on simultaneous
measurements of force and response, which require very high frequency sampling, even
very small phase differences between measurements will corrupt the parameter estimation
process unless full compensation is possible. Satisfactory compensation is difficult to
achieve when the measuring instruments themselves behave nonlinearly. The first
parameter estimation method tested is the State Variable Filter (see reference [30] for good
application of the SVF), and method 2 is based on Markov process theory with the use
of stationary moment equations [31]. The SVF requires explicit force and response
histories, whereas the moment method requires only response (moments), upon assuming
the excitation can be modelled as Gaussian white noise. Implementation details for both
methods as given in the Appendix applied to a slightly reduced version of equation (9)
by locking parameter C1 =0 (use of this reduced version for testing these methods is fully
justified because the linear damping term, obtained with real data, turns out to be small
compared with the non-linear damping terms—see section 5).

Conventional time-domain simulations used in the tests involve three stages: (i)
construction of excitation sample paths; (ii) numerical integration (by using Runge–Kutta);
and (iii), post-processing for transient removal and collection of stationary responses of
length T. In the second stage, a truncated Whitaker filter [32] is used to allow convergence
of the numerical integration, because white noise samples of the excitation process are
assembled at discrete time intervals of duration Dt, giving a uniformly increasing Nyquist
bandwidth fn =1/2Dt as Dt:0. Normally this has the effect of creating noisier excitation
samples as Dt:0. But by fixing Dt, use of the Whitaker filter allows interpolation to
smaller time steps dt generating rapid reduction of the truncation error. Accurate Monte
Carlo simulation requires Dt to be suitably chosen to give a Nyquist bandwidth many times

Figure 2. Marginal probability density function for the displacement variable predicted with the FEM by using
both target and estimated parameters with different time steps dt in the SVF method. ——, For target parameters;
for estimated parameters: W, dt=0·002 s; ×, dt=0·0015; r. dt=0·0005 s.
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the characteristic bandwidth of the system, with dt usually selected somewhat smaller to
meet the numerical convergence requirements.

In testing both methods, the non-zero target parameter values used for equation (9) are
as follows: a1 =0·812, a2 =0·015, v2

n =20835, gv2
n =3019, A=200. The target damping

and stiffness parameters shown here were actually obtained by using a preliminary study
based on the moment method applied to a limited amount of real data taken from the
experimental test rig (discussed in section 4—see Figure 6 of section 4). After appropriate
integration of accelerometer measurements to obtain displacement time histories, followed
by application of the moment method, these particular target parameters were returned.
Although this set will ultimately turn out to be different from those obtained using the
particular estimation method chosen as a result of the study shortly, it does in fact prove
quite adequate for testing against simulated data, the nonlinear parameter estimation
capabilities of both methods.

Fig 3. Caption on opposite page.
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Figure 3. Extreme exceedance probabilities obtained with the FEM using both target and estimated
parameters with different time steps dt in the SVF method (a) T=1 s (27·5 cycles); (b) T=10 s (275 cycles);
(c) T=100 s (2750 cycles); (d) T=250 s (6875 cycles). Key as Figure 2.

Band-limited white noise up to a frequency of 250 Hz (Dt=0·002 s) was used to cover
the required response band-width of the model. Simulations of low probability extreme
values in reference [28], showed complete convergence at dt=0·001 s for a similar system
with similar parameters. Presentation of the results for two sets of tests are shown in two
parts: first we show the effect on the SVF of varying the sampling rate from 500 Hz to
2000 Hz; and second we show the effect of using different sets of equations in the moment
method (see the Appendix), and report on the findings of similar sampling rate sensitivity
tests for the moment method.

In the SVF method tests, excitation and corresponding response histories of 250 s
duration (6875 cycles) are generated by simulation. Since the simulation method generates
only discrete samples, intermediate points are needed—these are also obtained by using
interpolation via the Whitaker filter allowing the small time step dt in the fourth order
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Figure 4. Marginal probability density function for the displacement variable, predicted with the FEM by
using both target and estimated parameters via different sets of equations in the moment method. ——, Exact
parameters; estimated parameters: w, (2, 4); × (2, 4, 6); (, (2, 4, 6, 8).

numerical integration scheme to be reduced from 0·002 s to 0·0005 s, with the results shown
in Table 1.

The test shows only the SVF estimator converging since the simulations have converged
for non-extreme values at dt=0·002 s—there is in fact still some change in the estimates
between 0·001 s and 0·0005 s suggesting the SVF estimation method has not yet converged
at 0·001 s. The results shown in Table 1 would indicate that the SVF will give acceptably
small nonlinear parameter estimation errors provided dt is not greater than 0·001 s (i.e.
a sampling rate q1000 Hz must be used).

In testing the moment method, different sets of moment equations were initially used
(see the Appendix). Here three sets are applied to simulated response data of 250 s duration
with a time step of dt=0·0005 s. These three tests involve application of: the second and
fourth moment equations, the second, fourth, and sixth, and the second, fourth, sixth and
eight equations. Although the method requires only response histories, the statistical
scatter in the final parameter estimates when using single 250 s simulated data sections is
very much higher than with the SVF method. To reduce this scatter, parameter estimates
obtained from 10 different sections are averaged to obtain mean estimates. These mean
values are shown in Table 2.

Although the moment method [31] outlined in the Appendix gives estimates of
damping-to-intensity ratio (not explicit values), a target excitation intensity A=200 is
used to assess the level of accuracy in explicit values. Different sampling frequencies were
also examined in the same way as for the previous SVF test, namely by using three values
dt=0·002, dt=0·001, and dt=0·0005 s respectively, but there was no observable
difference between the corresponding parameter estimates (confirming convergence of the
simulations).

To give an indication of the rate of convergence obtained when using both methods (at
the worst but in fact necessary sampling rate) Figure 1(a) and 1(b) show the convergence
of the estimate for the nonlinear damping parameter a1—demonstrating that roughly
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similar convergence rates are obtained and confirming that most of the data is needed. It
must be stressed however that the SVF estimate would of course be significantly more
accurate when using faster sampling rates.

Although the performance of both the SVF and moment methods can be judged to some
extent from Tables 1 and 2, results can be rather misleading since the accuracy of the
estimated parameters must be measured in terms of the different response statistics for
which they will ultimately be used. A better test therefore requires direct comparison
between response statistics based on the model when using target parameters, compared
with those obtained when using estimated parameters. For this purpose statistics based
on a finite element solution of the FPK equation are appropriate since they are largely
free from the statistical variability inherent in the simulations. Here the response amplitude
marginal probability density function and the extreme value exceedance probability (for
fixed duration of length T) are predicted via the route described in section 2.1. The finite
element method used is a 31×31 mesh over a quarter region—this is quite adequate for

Figs 5a–b. Caption overleaf
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Figure 5. Extreme exceedance probabilities predicted with the FEM by using both target and estimated
parameters and different sets of equations in the moment method: (a) T=1 s (27·5 cycles); (b) T=10 s (275
cycles); (c) T=100 s (2750 cycles); (d) T=250 s (6875 cycles). Key as Figure 4.

extreme response prediction [28]. To predict the joint probability density function and the
extreme response for different durations when using parameter estimates obtained with the
SVF method described in the Appendix, the theoretical intensity A=200 is used, without
attempting to estimate it from the excitation process.

The response marginal density function based on the exact parameters and the
FEM–FPK solution method is compared in Figure 2 with the corresponding density
obtained with the SVF estimates. It can be seen that for progressively smaller time step,
the predicted marginal density improves approaching the target density function. Figure
3(a–d) show a comparison of extreme values exceedance probabilities down to 10−3 for
durations of T=1, 10, 100, and 250 s respectively (i.e. 27·5, 275, 2750 and 6875 cycles).
Confident extreme value exceedance probabilities down to 10−2 (when using simulated or
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Figure 6. Experimental rig in diagrammatic form showing plan view of the clamped-clamped beam with
effective dimensions 1 m×25 mm×3 mm.

experimental data) require, for each duration of length T, about 1000 samples of M(t)
[used in equation (13)]. This places very heavy demands on data requirements.

To turn now to the moment method, Figure 4 shows probability density functions
predicted with the FEM-FPK approach when using target parameters, compared with use
of estimated parameters via different combinations of moment equations. Figure 5(a–d)

Figure 7. Probability density estimate from sample of measured shaker force compared with normal density
with same mean and standard deviation.
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Figure 8. Probability density estimate from sample of the measured central beam deflection compared with
normal density with same mean and standard deviation.

shows corresponding extreme value exceedance probabilities down to 10−4 for durations
of T=1 (27·5 cycles), 10 (275 cycles), 100 (2750 cycles) and 250 (6875 cycles) seconds
respectively. In each figure, the extreme response statistics are based on the target
parameters compared with those obtained from (i) the set of second and fourth, (ii) the
second, fourth and fifth, and (iii) the second, fourth, sixth and eight moment equations.
Although the individual parameters returned by the moment method are not very accurate,
treated as a single set in the equation of motion, these estimates are very good for
predicting both marginal densities and extreme response statistics via the FPK–FEM
approach—this would suggest a degree of matching between the Markov based parameter
estimation method and the Markov based predictions (i.e. by using the FPK equation).

Three relevant conclusions can be reached from these tests in respect of their suitability
for use on real experimental data:
(1) The SVF method is very sensitive to sampling rate, therefore in some applications this

may create data storage problems or difficulties with phase shift in real measurements.
(2) The moment method cannot be judged on the specific parameter estimates alone, but

rather in terms of predicted response statistics.
(3) The particular set of moment equations used for parameter estimation is important

subsequently for prediction of extreme response statistics.
Since there were indeed both storage limitations in our experimental data acquisition

system, and problems of phase shift between simultaneous measurements of force and
response, these findings justified in our application use of the moment method rather than
SVF based parameter estimation. It must again be stressed however that under different
circumstances, the findings of Table 1 show that the SVF method would of course be more
appropriate.
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4. EXPERIMENTAL BEAM RIG AND MEASUREMENT DETAILS

The experimental test rig is shown schematically in plan view in Figure 6. The beam
was selected for its appropriate dynamic characteristics to allow large amplitude vibration
and extreme value data collection (at a suitable sampling rate) from hundreds of thousands
of high amplitude vibration cycles without change in mechanical properties [33]. To
achieve the required dynamic characteristics, upper and lower limits were imposed on the
lowest resonance frequency. The beam dimensions were therefore chosen so that, with
appropriate band-limited excitation, only the lowest (nonlinear) resonance frequency
would be excited and that response amplitudes would exhibit the sort of nonlinear
behaviour typically occurring on highly loaded structures. To meet these demands a steel
beam was used of length L=1000 mm, depth d=3 mm and breadth b=25 mm with
E=190×109 N/m2 and density r=7580 kg/m3, giving the first three small amplitude
linear vibration frequencies of 15 Hz, 42 Hz and 82 Hz respectively.

A standard electromagnetic shaker, capable of producing a maximum force of 100 N
with correct bandwidth, was used to excite the beam. This was connected directly near one
end of the beam (19·2 mm from one of the clamps) via a force transducer to allow moderate
displacement of the shaker head but to minimize the impact of the shaker dynamics. The
shaker gave a maximum peak-to-peak displacement of 16 mm over a frequency range
1·5 Hz–9 kHz. Excitation signals were generated by using function and noise generators
via a variable filter allowing fine tuning of the white noise bandwidth. To construct

Figure 9. Typical measured time history for the central beam displacement (absolute and normalized. (a) 25
cycles; (b) 0 250 cycles; (c) normalized displacement ratio w/r for 06250 cycles.
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Figure 10. Power spectral density estimates from the measured force and central beam displacement showing
the locations of the first three linear undamped natural frequencies.

band-limited white noise excitation signals with sufficient power, the signal generator
outputs were fed via high pass and low pass filters (with cut-off frequencies set at 10 Hz
and 40 Hz respectively) and finally into a power amplifier. Force measurement was
obtained by using a (Kistler type 9031) transducer capable of being used for both static
and dynamic applications.

A single accelerometer (Bruel & Kjaer type 4332) was located at the beam mid-span
position. To obtain integrated displacements above a frequency of 10 Hz, sampled
acceleration signals at 500 Hz were fed into a very high input impedance charge amplifier
(vibration pick-up preamplifier type 2625). These displacement signals were fed into a
null-adjuster voltage amplifier which also removed d.c. offset introduced by the integration
network. Calibration of the accelerometer used a capacitive type displacement transducer
(Wayne Kerr) giving a working range of 0–8 mm, and accuracy of 1% with linearity better
than 2%. This was not used for large amplitude beam vibration owing to its limited
working range, typically being a little less than measured extreme values. The capacitive
transducer itself was calibrated dynamically (by using a moving table) and was then used
to calibrate measured displacements obtained from the accelerometer (positioned on the
shaker head driven by a 20 Hz signal).

For parameter estimation, force and displacement data could only just be captured
without storage problems with our commercial system in single records of 250 s duration
at 0·002 s. For direct extreme value measurement however, the largest maximum was
required for each duration of length T, with tests necessarily repeated several hundred
times to enable sufficient global maxima to be captured for each duration. This placed very
heavy demands on storage so the capture procedure had to be very selective by storing
only the maximum values, not the entire record. To ensure no change in the mechanical
properties of the beam over these very long experiments, 250 s long sections were
periodically captured specifically to confirm repeatable results. For both types of data
collection a sampling rate of 500 Hz was used.
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5. MODEL VERIFICATION USING MEASURED DATA AND MOMENT BASED
PARAMETER ESTIMATION

The Markov based model verification and prediction approach developed in section 3
is now applied to data generated with the purpose-built experimental rig. In total, ten
semi-empirical sub-models obtained from equation (9) are examined—these are
conveniently labelled A–H as follows:

(A) z̈+C1ż+v2
nz=Aw(t); (14)

(B) z̈+C1ż+v2
n (1+ gz2)z=Aw(t); (15)

(C) z̈+ a1żz2 +v2
n (1+ gz2)z=Aw(t); (16)

(D) z̈+C1ż+ a1żz2 +v2
n (1+ gz2)z=Aw(t); (17)

Figs 11a–b. Caption on page 22.
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Figs 11c–d. Caption on page 364

(E) z̈+ a2ż=ż=+v2
n (1+ gz2)z=Aw(t); (18)

(F) z̈+C1ż+ a2ż=ż=+v2
n (1+ gz2)z=Aw(t); (19)

(G) z̈+ a1żz2 + a2ż=ż=+v2
n (1+ gz2)z=Aw(t); (20)

(H) z̈+C1ż+ a1żz2 + a2ż=ż=+v2
n (1+ gz2)z=Aw(t). (21)

Models A–G are obtained by locking to zero specific parameters in model H [namely the
semi-empirical SDOF model equation (9)]. The suitability of each model is assessed in
terms of its performance at marginal probability density level, and then the best model
is examined in terms of extreme value exceedance probabilities over different durations.
To minimize the statistical variability in the parameter estimates obtained using an
appropriate set of second, fourth, and sixth order moment equations (as tested in section
3), a total of 10 parameter estimation sets are averaged for each model. The measured
displacement marginal density functions are compared with prediction based on the mean
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parameter estimates using finite element solutions of the FPK equation outlined in
section 2. Likewise, for the best model, extreme value exceedances are compared with
predictions (also see section 2) in the probability range 10−3–10−4 for durations T=1, 10,
20 and 40 s.

The moment based parameter estimation method, tested on simulated data in section
3, model G was used rather than model H (see the Appendix). This was justified because
the impact of the linear damping contribution was assumed to be very much smaller than
the non-linear damping. To confirm this assumption, the full set of second, fourth, and
sixth order moment equations for model H (derived in the same way as shown in the
Appendix) were used here on the real data. These equations are given explicitly as follows.

Moment equations for model H. The stiffness parameters are estimated from the
respective set of moment equations (22)–(27) by using the second order equation

k2[v2
nE(z2

1 )+ gv2
nE(z4

1 )]= k1E(z2
2 ), (22)

Figs 11e–f. Caption overleaf
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Figs 11g–h.

Figure 11. Measured probability density function for the central beam displacement compared with prediction
via the FEM by using the mean parameter estimates from the moment method: (a)–(h) correspond to models
A–H respectively. q, measured pdf; ×, predicted pdf.

the fourth order equations

k2[v2
nE(z2

1z2
2 )+ gv2

nE(z4
1z2

2 )]= k1E(z4
2 ), (23)

k2[v2
nE(z4

1 )+ gv2
nE(z6

1 )]= k1E(z2
1z2

2 ), (24)

and the set of sixth order equations

k2[v2
nE(z2

1z4
2 )+ gv2

nE(z4
1z4

2 )]= pA2k2(k2 −1)E(z1z3
2 )+ k1E(z6

2 ), (25)

k2[v2
nE(z4

1z2
2 )+ gv2

nE(z6
1z2

2 )]= k1E(z2
1z4

2 ), (26)

k2[v2
nE(z6

1 )+ gv2
nE(z8

1 )]= k1E(z4
1z2

2 ), (27)
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and both linear and non-linear damping parameters are estimated from the sets of
equations (28)–(33) by using the second order equation

k2[C1E(z2
2 )+ a1E(z2

1z2
2 )+ a2E(z2

2 =z2=)]= pA2k2(k2 −1), (28)

and fourth order equations

k2[C1E(z4
2 )+ a1E(z4

2 )+ a2E(z4
2 =z2=)]= pA2k2(k2 −1)E(z2

2 ) (29)

k2[C1E(z2
1z2

2 )+ a1E(z4
1z2

2 )+ a2E(z2
1z2

2 =z2=)]= pA2k2(k2 −1)E(z2
1 ), (30)

and the sixth order equations

k2[C1E(z6
2 )+ a1E(z2

1z6
2 )+ a2E(z6

2 =z2=)]= pA2k2(k2 −1)E(z4
2 ) (31)

k2[C1E(z2
1z4

2 )+ a1E(z4
1z4

2 )+ a2E(z2
1z4

2 =z2=)]= pA2k2(k2 −1)E(z2
1z2

2 ), (32)

k2[C1E(z4
1z6

2 )+ a1E(z6
1z2

2 )+ a2E(z4
1z2

2 =z2=)]= pA2k2(k2 −1)E(z4
1 ). (33)

Here E(·) is the expectation operator and is applied to the time histories in the form of
a sample averaging operator, and in each equation k1 + k2 = the equation order, and k1

is indexed from k1 =0, 1, . . . .
Figure 7 shows a typical measured excitation force probability density function

compared with a target Gaussian density with the same mean and standard deviation.
Figure 8 shows a typical probability density estimate for the central beam displacement
also compared with a target Gaussian density with the same moments. Time histories for
the measured central beam displacement are shown in Figure 9: i.e. in absolute terms for
Figure 9(a) and 9(b) corresponding to 25 cycles and 250 cycles respectively, and in terms
of normalized displacements in Figure 9(c) showing a full record of 250 s (6250 cycles).
Figure 10 shows a typical measured force power spectral density and a typical PSD for
the central beam displacement. The first, second and third non-linear resonances are
identified on the figure as w1 w2 and w3 respectively along with the small amplitude linear
undamped free vibration frequencies. A peak response frequency at double the first
nonlinear resonance frequency is also identified on Figure 10 and marked as 2×w1 . An

T 3

Averaged parameter estimates obtained with the Markov moment method

Magnitude of parameter mean values and the corresponding 95% confidence limits
*(sample size n=10)

ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXV
Damping Stiffness

ZXXXXXXXXXXCXXXXXXXXXXV ZXXXXXXCXXXXXXV
(C1/A2)×10−6 (a1/A2)×10−6 (a2/A2)×10−6 v2

n gv2
n

ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV
Model Mean 95% C.L. Mean 95% C.L. Mean 95% C.L. Mean 95% C.L. Mean 95% C.L.

A 177.6 212.5 — — — — 22 276 2360 — —
B 177.6 212.5 — — — — 15 573 2493 2322 2249
C — — 242.8 234.4 — — 17 573 2493 2322 2249
D 179.6 213.4 −2·7 22.0 — — 17 573 2493 2322 2249
E — — — — 0.54 20.07 17 573 2493 2322 2249
F 100.3 222.6 — — 0.24 20.11 17 573 2493 2322 2249
G — — 19.5 22.9 0.50 20.07 17 573 2493 2322 2249
H 13.5 256.6 18.2 27.9 0.47 20.20 17 573 2493 2322 2249

* Individual estimates for each sample obtained with the set of second, fourth and sixth order moment
equations. 95% confidence limits are obtained using the t distribution with 9 degrees-of-freedom, giving
confidence limits=2·26×standard error in the mean (defined as the individual sample standard deviation/zn).
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example of a typical estimate of the measured displacement mean and standard deviation
is −0·44 mm and 2·85 mm respectively giving a normalized displacement for this beam
(w/r)rms =3·3 and largest normalized extreme value wmax/r1 10—therefore this beam
vibration is highly nonlinear. The performance and suitability of the different dynamic
models A–H is assessed by direct comparison of the predicted marginal density obtained
via the FPK equation with an histogram estimate of the measured marginal density
function. Figure 11(a)–(h) shows these comparisons for models A–H. Table 3 shows
averaged parameter estimates obtained from 10 sets of measured data using the moment
method. The individual sets of parameter estimates obtained for each of the 10 samples
is for reasons of space not shown. However in addition to estimated mean values, 95%
confidence limits in the mean value estimates are shown, based on a sample size n=10,
with implicit assumption of normally distributed parameter estimates. Application of the
method of equivalent linearization to the average damping obtained for model H gives a
value of 1·38% critical—which for this particular set of samples, implies that most of the

Figs 12a–b Caption opposite.
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Figure 12. Measured extreme value exceedance probability for the central beam displacement compared with
prediction via the FEM by using the mean parameter estimates from the moment method for the best fit (model
H), and the worst (model A, linear). (a) T=1 s; (b) T=10 s, (c) T=20 s; (d) T=40 s.

damping is derived from the nonlinear part since the contribution from the average C1

estimate alone, represents only about 0·18% critical. This adds justification to the
assumption made in section 3 regarding parameter C1 being small, even though the
confidence in the damping parameters for model H is lower than for model G, a point
discussed further shortly.

By contrast, extreme value exceedance probabilities were predicted for the linear models
A–H, as obtained by using the method described in section 2, and compared with
experimental measurements corresponding to four different durations T=1, 10, 20, and
40 s respectively. These predictions are based on the same set of parameters used to predict
the marginal densities as shown in Figure 12(a–d) down to probability levels of 10−3, where
predictions for models A and H are selected to show the best and worst cases, based on
their respective performances at the marginal density level. Extreme value predictions for
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models B–G (not shown) are bounded between predictions shown for models A and H.
Measured extreme value exceedance probabilities for (positive) global maxima, and for
absolute values of global minima, are shown to indicate any vibration asymmetry. Note that
measurement of extreme exceedances down to these sort of probability levels takes
considerable time. For example, in our experiments, collection of a total of 1150 extreme
values needed for a duration T=40 s, took more than 20 h of real time continuous
measurement.

5.1.   

First a comment is in order about the strength of nonlinearity evident in the measured
vibration: Figure 10, showing the comparison of the force and response power spectral
densities, indicates the relative shift in position of the resonance peaks compared with the
linear undamped natural frequencies and confirms that these beam vibrations are indeed
highly nonlinear. Note that the relative magnitude of the second resonance peak w2 , is as
expected many orders of magnitude smaller than the first nonlinear resonance peak w1
since the displacements correspond to a mid-span measurement—effectively at a node
where the second mode responses should theoretically be zero. This information is
obviously insufficient to confirm that the second resonance amplitude, resulting from the
upper frequency tail of the band-limited white noise excitation, is insignificant. This was
confirmed by measurement away from the mid-span position. Note that the peak at a
frequency twice the first resonance (indicated by 2×w1 ) confirms some small degree of
vibration asymmetry probably caused by the shaker or non-isotropic material properties.

Next, the results shown in Table 3, demonstrate how the damping model seems to be
very sensitive to forcibly locking individual terms to zero. This is particularly evident in
the change from model C to model D. However by the time the full model H is used, the
relative magnitude of the linear damping term seems to have diminished considerably.
Note the 95% confidence limits shown in Table 3 give an indication of the statistical scatter
in the average parameter values and therefore an indication of the parameter estimation
errors one would expect from the effects of statistical variations in the data alone. In
assessing the implications of this scatter, a clear distinction has to be made between the
stability of the model calibration process when using the moment method, and the quality
of the model itself—this distinction being focused mainly on models G and H. It can be
seen from the confidence limits constructed for model G in Table 3, when compared with
the (second, fourth and sixth order) % error column of Table 2 (which applies to model
G only, for which the linear parameter is locked to zero) that statistical fluctuation in the
moment method is significantly smaller than the errors obtained via the simulation study.
Therefore, from a statistical viewpoint, high confidence can be attached to the mean
damping parameters obtained for model G, whose calibration can be regarded as very
stable. By contrast, the lower level of confidence indicated for calibration of model H,
would imply (from a statistical viewpoint) that a larger variation in mean parameters is
possible, including a significant linear term. This suggests that calibration of model H is
very much less stable than model G. But an important finding of the simulation study in
section 3 was that errors in the moment based parameter estimates should not be looked
at in isolation from the predicted probabilities when using the FPK equation, which are
not sensitive to these individual errors owing to correlation between the parameter
estimates (and a convergence study shows that for increasing sample size n, the predicted
probability density funtions, based on parameter estimates for models A–H, converge for
practical purposes, by the time n=10). Furthermore Figure 11(g) and 11(h) clearly show
that corresponding probabilities predicted when using models G and H are very
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similar—which could not be possible if the linear damping contribution were really
significant for model H—confirming the beam as having almost wholly non-linear damping.

However the lower scatter in the parameters obtained for model G, would initially
suggest this is the best model to use. But calibrated model H actually appears to give the
best predictions compared with both the measured densities and extreme values. Therefore,
upon taking into account the lack of sensitivity in the probability predictions and the
evidence in the comparisons with measured data, model H is deemed superior. The
predicted statistical scatter in the individual mean estimates can therefore give an
unrealistically pessimistic impression of the model calibration, when in fact a reasonable
level of confidence can be attached to the moment based model verification. Obviously in
more general applications, to achieve a high level of confidence in the calibration of model
H, a much larger sample size is needed. But an interesting general finding of the calibration,
evident from Figure 11 (a–h) [and Figure 12(a–d)] is that model A (effectively an equivalent
linear model) is clearly very much inferior to model H.

Finally to assess the suitability of dynamic models A–H in predicting extreme-value
statistics, on the assumptions that (i) this calibration method is appropriate and (ii) a
SDOF model is valid, the comparison between measured and predicted extreme value
statistics shown in Figure 12(a–d) should confirm whether at least one of these assumptions
is false. Indeed it is apparent from the difference between the measured positive and
negative extreme values in Figure 12(a–d) that there is a small degree of vibration
asymmetry. Predictions for model A are most seriously in error, but model H also shows
significant disagreement, which contrasts sharply with the level of agreement found in
Figure 11(h). These results show that the measured extreme values are typically more than
20% below those obtained by prediction, which translates into a probability prediction
error of several orders of magnitude. Some significant effect is therefore not being taken
into account. There are several possible reasons for this difference, most of which are
unlikely and are ruled out shortly. These possible reasons are the following:

(1) The use of a SDOF model is inappropriate for large amplitude vibration owing to
non-linear coupling and therefore a vibration model with at least two
degrees-of-freedom is needed.

(2) The calibration approach is inappropriate for extreme value prediction.
(3) Predictions based on infinite bandwidth white noise might be inappropriate for

systems with band-limited excitation.
(4) The Poisson assumption used in approximating extreme values might not hold.
(5) Some complex mechanism exists within the experimental rig and measuring

equipment which manifests itself only at large amplitudes.
In assessing the likelihood of these reasons we can dismiss (5) because if there were

some mechanism at work, one would expect some evidence in Figure 11(a–h) at large
amplitude. Also it is unlikely that such a mechanism would be symmetric and therefore
the difference between positive and negative extreme values should have been much more
pronounced. Reasons (3) and (4) can also be dismissed since these assumptions have been
examined in detail in reference [28] and found to hold for oscillators with this sort of
non-linear damping. Moreover, prediction errors in Figure 12(a–d) show no dependence
on duration, i.e. from T=1 s to T=40 s, which would otherwise be expected if this were
the cause.

The possibility of inappropriate calibration of damping, can also be discounted, because
the damping forces are actually greatest at some intermediate amplitudes, not at the
extreme values (where damping forces are zero). Incorrect damping parameters would
therefore be expected to produce visible differences in the marginal density functions
particularly Figure 11(g) and 11(h).
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This leaves reason (1) as the most likely cause, namely that a SDOF model is inadequate
and that more degrees of freedom are needed. Note that from a measurement viewpoint
(when using single point beam vibration measurements) non-linear coupling cannot be
clearly observed in the displacement power spectral density because higher mode
participation, described for example by using a generalized displacement model, occurs
mainly at the dominant response frequency. This phenomenon is best understood in terms
of coupled non-linear free vibration responses [6, 7] where higher mode participation
occurs with the same period as the lowest mode (a result of non-linear coupling)—this is
in contrast to free vibrations of a linear MDOF system which in general occur at distinctly
different natural frequencies. The only clear way to observe non-linear coupling in forced
non-linear beam vibration measurements is therefore by detailed examination of mode
shape changes, as in references [14, 16]. Now the question of whether or not the level of
participation suggested here, for band-limited white noise excitation of a clamped beam,
compares with theoretical predictions elsewhere, there is in fact strong predicted evidence
to suggest that the % higher mode participation through non-linear coupling, may indeed
be very significant at normalized beam amplitudes in the range 7Qwmax/rQ 10. Predictions
of higher mode participation in free vibration of clamped beams are given in references
[6, 7] (see Table 6 of reference [7]) and for harmonically forced vibration in reference [17].
The predicted % participation from the third mode for free vibration of beams at the
lowest non-linear natural frequency is given for wmax/rE 5 showing this to be a strongly
non-linearly increasing function of wmax/r. In fact for wmax/r=5 predictions show 3·2%
participation from the third mode, but extrapolation to wmax/r=10, would give a figure
around 15%. Based on such predictions it is therefore very plausible, that in forced
vibration of a clamped beam with random loading there is significant non-linear coupling
in the range 7Qwmax/rQ 10 which is otherwise insignificant below this range. With
non-central loading this coupling may involve participation from second, third and
possibly higher modes. The measured extreme value results shown in Figure 12(a–d) now
give great impetus to adopt a MDOF random vibration model, by using for example an
FEM suggested in reference [7] or [17], to predict theoretically the level of non-linear
coupling occurring in random beam vibration and to establish the model order needed for
accurate extreme value prediction. The starting point for accurate forced response
prediction with a reduced MDOF model however requires use of an appropriate damping
model in each equation of motion of a system of coupling Duffing-type equations—our
calibrated three-term model now offers distinct possibilities for meeting this requirement.

6. CONCLUSIONS

An empirical three-term non-linear damping model, for use with a single-degree-of-free-
dom Duffing-type equation of motion for clamped-clamped beam vibration, driven with
band-limited white noise excitation, has been calibrated by using experimental
measurements. Calibration has made use of a Markov moment method and finite element
solutions of the stationary Fokker–Planck equation. The individual parts within the
damping model are shown to have a profound effect on the accuracy of prediction, even
at low level response amplitudes. Comparison between measurement and prediction by
using the full calibrated model shows excellent agreement for probability density functions
associated with the central beam displacement up to a normalized amplitude around
wmax/r=7. But subsequent comparisons of measured and predicted extreme value
exceedance probabilities in the range 7Qwmax/rQ 10 show significant differences.
Nonlinear beam coupling is identified as the most likely cause for this difference, suggesting
that forced random vibrations of a clamped-clamped beam can be accurately predicted
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with a SDOF model up to moderately large amplitudes, but only a little beyond this, a
MDOF model is definitely needed.
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APPENDIX

In this appendix, application of two parameter estimation methods in their original form
is demonstrated on specific SDOF clamped-clamped beam vibration model G (equation
(20)) of section 5. These methods are (1) the State Variable Filter (see reference [30]), and
(2) a Markov based moment method [31]. Model G is rewritten for convenience as

z̈+ a1żz2 + a2ż=ż=+v2
nz+ gv2

nz3 =Aw(t),

where the excitation is modelled as a standard Gaussian white noise process w(t) with
intensity A. The parameter estimation problem, simply stated is: how do you obtain
accurate parameter values from measurements of system input–output behaviour? In
general this requires explicit excitation and response information, but in particular
situations, parameter estimation may be possible using only partial information. The state
variable filter does in fact require explicit force and response measurements but is in fact
very general; the Markov moment method can be exploited without explicit excitation time
histories when this is assumed to be white noise. Application of both of these
‘linear-in-the-parameter’ estimation methods is now demonstrated:

A.1.        (SVF)

Consider equation (20) expressed in more general form as

z̈+ a1żz2 + a2ż=ż=+v2
nz+ gv2

nz3 = bf(t), (A1)

where now the excitation f(t) can be any continuous function provided it is sufficiently
‘rich’ containing at least two different excitation frequencies. To implement the SVF, the
terms m1ż and m2z are initially added to both sides of equation (A1):

z̈+m1ż+m2z=m1ż+m2z− a1zz2 − a2ż=ż=−v2
nz3 − gv2

nz3 + bf(t).

Then two terms are defined;

f1 =−m1, f2 =v2
n −m2, (A2, A3)
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where m1 and m2 are constant value filter coefficients (chosen a priori largely by trial and
error); then on rearranging, equation (A2) becomes

z̈+m1z+m2z=−f1ż− a1żz2 − a2ż=ż=− f2z− gv2
nz3 + bf(t). (A4)

Equation (A4) represents the linear state-variable filter, in which the coefficients to be
estimated, appear on the right-hand side. One can introduce the following set of ‘auxiliary’
equations:

d2

dt2 ( y1)+m1
d
dt

( y1)+m2( y1)=−z(t) (A5)

d2

dt2 ( y2)+m1
d
dt

( y2)+m2( y2)=−ż(t)z2(t) (A6)

d2

dt2 ( y3)+m1
d
dt

( y3)+m2( y3)= − z� (t)=z� (t)= (A7)

d2

dt2 ( y4)+m1
d
dt

( y4)+m2( y4)=−z3(t) (A8)

d2

dt2 ( y5)+m1
d
dt

( y5)+m2( y5)= f(t), (A9)

Upon multiplying equation (A5) by f2, one has

d2

dt2 ( f2y1)+m1
d
dt

( f2y1)+m2( f2y1)=−f2z(t), (A10)

and then differentiating equation (A5) and multiplying by f1 one obtains

d2

dt2 ( f1ẏ1)+m1
d
dt

( f1ẏ1)+m2( f1ẏ1)=−f1ż(t). (A11)

Upon multiplying equation (A6) by a1 it follows that

d2

dt2 (a1y2)+m1
d
dt

(a1y2)+m2(a1y2)=−a1ż(t)z2(t), (A12)

and multiplying equation (A7) by a2 one obtains

d2

dt2 (a2y3)+m1
d
dt

(a2y3)+m2(a2y3)=−a2ż(t)=ż( t)=. (A13)

Then multiplying equation (A8) by gv2
n gives

d2

dt2 (gv2
ny4)+m1

d
dt

(gv2
ny4)+m2(gv2

ny4)=−gv2
nz3(t), (A14)

and finally multiplying equation (A9) by b one obtains

d2

dt2 (by5)+m1
d
dt

(by5)+m2(by5)= bf(t). (A15)

Adding equation (A10) to (A15) gives, on comparison with equation (A4), the following
equality of variables:

z= f1ẏ1 + f2y1 + a1y2 + a2y3 + gv2
ny4 + by5. (A16)
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On introducing state vector notation and letting

ẏ1 f1

y1 f2

y2 a1

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

U� (t)=
y3

, u� =
a2

,

y4 gv2
n

y5 b

one can then write equation (A16) compactly as

z(t)=U� T(t)u� (A17)
(where the superscript T denotes the transpose). U� (t) is known as the estimation filter state,
and u� is the parameter vector. Since in practice z(t) is measured at times ti = i×Dt (Dt
is the sampling time interval), equation (A17) can be modified to

zi (ti )=U� T(ti )u� , (A18)

and the error equation is written as

E= z (ti )−U� T(ti )u� . (A19)

Estimates of the parameter vector u� can be obtained by minimizing the error equation
(A19) (in a least-square sense) where the summed square error is

J= s
N

i=0

[z (ti )−U� T(ti )u� ]2. (A20)

Off-line (non-recursive) algorithms can be used to estimate the parameter vector u� , which
minimizes the cost function J. Alternatively parameter estimation may proceed recursively
by marching forward in time, allowing the evolution of the parameters to be studied. The
recursive algorithm used here is summarized as follows:

If we let u� 
 N be the least square estimate of u� at time ti = i×Dt and U� i =U� (t= ti ),
zi = z(t= ti ) and also let

S� N = s
N

i=0

U� iU� T
i , (A21)

then at corresponding time tn , the algorithm can be written in five steps (a)–(e) by using
appropriate variables as follows:

(a) sN+1 =U� T
N+1S� −1

N U� N+1, (A22)

(b) K� N+1 =
1

(1+ sN+1)
S� −1

N U� N+1, (A23)

(c) êN+1 = zN+1 −U� T
N+1u�
 N , (A24)

(d) u�
 N+1 = u�
 +K� N+1êN+1 (A25)

(e) S� −1
N+1 =S� −1

N −(1+ sN+1)K� N+1K� T
N+1. (A26)

Steps (a) to (e) can be repeated at times tN+1 and so on, enabling u�
 N to be evaluated
recursively. To start this algorithm, it is necessary to specify initial values for u� and S� −1

−1
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at time zero. In practice these are chosen as u�
 −1 =0� , S� −1
−1 = lI� , where I� is the unit matrix

and l is a large scalar, typically chosen around 105.

A.2.        

The SVF method described above requires explicit, measurements of both excitation and
response processes—in this alternative approach Markov process theory [31] is used to
construct a system of equations which the response moments and the parameters must
satisfy. This is particularly suited to systems driven by broad-band noise where only
moments of the response process are known. Again this method is implemented for
estimation of parameters in model G [equation (20)]. When equation (20) is put into
random differential (I
 to) form,

z� � = g� (z� )+Gw� (t) (A27)

where the vectors z� and z� ˙ (the response and velocity) constitute an n dimensional vector
Markov process. Here w� (t) is a zero mean uncorrelated vector of Gaussian white noise
processes with constant spectral density of unit amplitude; g� (z� ) is a vector of system
functions.

The general form of the FPK equation associated with equation (A27) is

1p(z� )
1t

=− s
n

i=1

1

1zi
[gi (z� )p(z� )]+1

2
s
n

i=1

s
n

j=1

Bij
12

1zi 1zj
[p(z� )], (A28)

where B=2pGGT and p(z� ) is the joint probability density function of the system.
Moment differential equations associated with equation (A28) can be written as

d
dt

E(h)= s
n

i=1

E0gi
1h
1zi1+

1
2

s
n

i=1

s
n

j=1

E0Bij
12h

1zi1zj1+E01h
1t1, (A29)

where the function h(z� , t)= zk1
1 zk2

2 · · · zkn
n . Application of the expectation operator produces

moments E(h)=E(zk1
1 zk2

2 · · · zkn
n ). From equation (A29), explicit sets of moment differential

equations of different orders (k1 + k2) can be established and when the individual moments
are known, the hierarchy of moment equations can be truncated to give a set of equations
satisfied by unknown parameters. Application of this approach to equation (20) gives the
corresponding moment differential equations:

E� (zk1
1 zk2

2 )= k1E(zk1 −1
1 zk2 +1

2 )− k2E[(a1z2z2
1 + a2z2=z2=)(zk1

1 zk2 −1
2 )]

−k2E[(v2
nz1 + gv2

nz3
1 )(zk1

1 zk2 −1
2 )]+ pA2k2(k2 −1)E(zk1

1 zk2 −2
2 ). (A30)

These are non-stationary moments which can be difficult to use with stationary data.
However stationary moments can also be used directly by assuming that E� (zk1

1 zk2
1 )=0.

Moreover, a property of stationary stochastic processes, gives zero odd moments; i.e.
E(zk1

1 zk2
2 )=0 for k1 + k2 =2*k+1 where k=0, 1, 2, . . . . In addition, for symmetric joint

probability density functions it can shown that the following expectations are also zero:
E(zk1

1 z2)=E(zk1
1 z2=z2=)=0 for k1 =2k+1, where k=0, 1, 2, 3, . . . . Upon taking account

of these properties, as applied to model G for example, an exact set of stationary
moment equations can be constructed. Here, the second, fourth, sixth and eighth orders
are written out explicitly for the appropriate combinations of k1 and k2 forming a set
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of 20 equations, from which the unknown parameters a1, a2, v2
n and gv2

n could in principle
be estimated:
second order: [e.g. combination with k1 + k2 =2, k1 always indexed from zero i.e.
(k1, k2) = (0, 2); (1, 1)]

k2[a1E(z2
1z2

2 )+ a2E(z2
2 =z2=)+v2

nE(z1z2)+ gv2
nE(z3

1z2)]= pA2k2(k2 −1), (A31)

k2[a1E(z3
1z2)+ a2E(z1z2=z2=)+v2

nE(z2
1 )+ gv2

nE(z4
1 )]= k1E(z2

2 ); (A32)

fourth order: [combination with k1 + k2 =4, (k1, k2)= (0, 4); (1, 3); (2,2); (3, 1)]

k2[a1E(z4
2 )+ a2E(z4

2 =z2=)+v2
nE(z1z3

2 )+ gv2
nE(z3

1z3
3 )]= pA2k2(k2 −1)E(z2

2 ), (A33)

k2[a1E(z3
1z3

2 )+ a2E(z1z4
2 =z2=)+v2

nE(z2
1z2

2 )+ gv2
nE(z4

1z2
2 )]

= pA2k2(k2 −1)E(z1z2)+ k1E(z4
2 ), (A34)

k2[a1E(z4
1z2

2 )+ a2E(z2
1z2

2 =z2=)+v2
nE(z3

1z2)+ gv2
nE(z5

1z1)]

= pA2k2(k2 −1)E(z2
1 )+ k1E(z1z3

2 ), (A35)

k2[a1E(z5
1z2)+ a2E(z3

1z2=z2=)+v2
nE(z4

1 )+ gv2
nE(z6

1 )]= k1E(z2
1z2

2 ); (A36)

sixth order:

k2[a1E(z2
1z6

2 )+ a2E(z6
2 =z2=)+v2

nE(z1
1z5

2 )+ gv2
nE(z3

1z5
2 )]= pA2k2(k2 −1)E(z4

2 ), (A37)

k2[a1E(z3
1z5

2 )+ a2E(z1z5
2 =z2=)+v2

nE(z2
1z4

2 )+ gv2
nE(z4

1z4
2 )]

= pA2k2(k2 −1)E(z1z3
2 )+ k1E(z6

2 ), (A38)

k2[a1E(z4
1z4

2 )+ a2E(z2
1z4

2 =z2=)+v2
nE(z3

1z3
2 )+ gv2

nE(z5
1z3

2 )]

= pA2k2(k2 −1)E(z2
1z2

2 )+ k1E(z1z5
2 ), (A39)

k2[a1E(z5
1z3

2 )+ a2E(z3
1z3

2 =z2=)+v2
nE(z4

1z2
2 )+ gv2

nE(z6
1z2

2 )]

= pA2k2(k2 −1)E(z3
1z2)+ k1E(z2

1z4
2 ), (A40)

k2[a1E(z6
1z2

2 )+ a2E(z4
1z2

2 =z2=)+v2
nE(z5

1z2)+ gv2
nE(z7

1z1)]

= pA2k2(k2 −1)E(z4
1 )+ k1E(z3

1z3
2 ), (A41)

k2[a1E(z7
1z2)+ a2E(z5

1z2=z2=)+v2
nE(z6

1 )+ gv2
nE(z8

1 )]= k1E(z4
1z2

2 ); (A42)

eighth order:

k2[a1E(z2
1z8

2 )+ a2E(z8
2 =z2=)+v2

nE(z1z7
2 )+ gv2

nE(z3
1z7

2 )]= pA2k2(k2 −1)E(z6
2 ), (A43)

k2[a1E(z3
1z7

2 )+ a2E(z1z7
2 =z2=)+v2

nE(z2
1z6

2 )+ gv2
nE(z4

1z6
2 )]

= pA2k2(k2 −1)E(z1z5
2 )+ k1E(z8

2 ), (A44)

k2[a1E(z4
1z6

2 )+ a2E(z2
1z6

2 =z2=)+v2
nE(z3

1z5
2 )+ gv2

nE(z5
1z5

2 )]

= pA2k2(k2 −1)E(z2
1z4

2 )+ k1E(z1z7
2 ), (A45)

k2[a1E(z5
1z5

2 )+ a2E(z3
1z5

2 =z2=)+v2
nE(z4

1z4
2 )+ gv2

nE(z6
1z4

2 )]

= pA2k2(k2 −1)E(z3
1z3

2 )+ k1E(z2
1z6

2 ), (A46)

k2[a1E(z6
1z4

2 )+ a2E(z4
1z4

2 =z2=)+v2
nE(z5

1z3
2 )+ gv2

nE(z7
1z3

2 )]

= pA2k2(k2 −1)E(z4
1z2

2 )+ k1E(z3
1z5

2 ), (A47)
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k2[a1E(z7
1z3

2 )+ a2E(z5
1z3

2 =z2=)+v2
nE(z6

1z2
2 )+ gv2

nE(z8
1z2

2 )]

= pA2k2(k2 −1)E(z5
1z2)+ k1E(z4

1z4
2 ), (A48)

k2[a1E(z8
1z2

2 )+ a2E(z6
1z2

2 =z2=)+v2
nE(z7

1z2)+ gv2
nE(z9

1z2)]

= pA2k2(k2 −1)E(z6
1 )+ k1E(z5

1z3
2 ), (A49)

k2[a1E(z9
1z2)+ a2E(z7

1z2=z2=)+v2
nE(z8

1 )+ gv2
nE(z10

1 )]= k1E(z6
1z2

2 ). (A50)

But an examination of the absolute magnitudes of several mixed moment estimates
allows them to be ignored, namely E(z1z3

2 ), E(z1z3
2 =z2=), E(z3

1z3
2 ), E(z3

1z3
2 =z2=), E(z1z5

2 ),
E(z1z5

2 =z2=), E(z5
1z3

2 ), E(z3
1z5

2 ) since these are typically very much smaller than other moments
(by a factor of at least 1000). A simplified set of second to eighth order moment equations
can therefore be written for model G as follows:
second order:

k2[a1E(z2
1z2

2 )+ a2E(z2
2 =z2=)]= pA2k2(k2 −1), (A51)

k2[v2
nE(z2

1 )+ gv2
nE(z4

1 )]= k1E(z2
2 ); (A52)

fourth order:

k2[a1E(z4
2 )+ a2E(z4

2 =z2=)]= pA2k2(k2 −1)E(z2
2 ), (A53)

k2[v2
nE(z2

1z2
2 )+ gv2

nE(z4
1z2

2 )]= k1E(z4
2 ), (A54)

k2[a1E(z4
1z2

2 )+ a2E(z2
1z2

2 =z2=)]= pA2k2(k2 −1)E(z2
1 ), (A55)

k2[v2
nE(z4

1 )+ gv2
nE(z6

1 )]= k1E(z2
1z2

2 ); (A56)

sixth order:

k2[a1E(z2
1z6

2 )+ a2E(z6
2 =z2=)]= pA2k2(k2 −1)E(z4

2 ), (A57)

k2[v2
nE(z2

1z4
2 )+ gv2

nE(z4
1z4

2 )]= pA2k2(k2 −1)E(z1z3
2 )+ k1E(z6

2 ), (A58)

k2[a1E(z4
1z4

2 )+ a2E(z2
1z4

2 =z2=)]= pA2k2(k2 −1)E(z2
1z2

2 ), (A59)

k2[v2
nE(z4

1z2
2 )+ gv2

nE(z6
1z2

2 )]= k1E(z2
1z4

2 ), (A60)

k2[a1E(z6
1z2

2 )+ a2E(z4
1z2

2 =z2=)]= pA2k2(k2 −1)E(z4
1 ), (A61)

k2[v2
nE(z6

1 )+ gv2
nE(z8

1 )]= k1E(z4
1z2

2 ); (A62)

eighth order:

k2[a1E(z2
1z8

2 )+ a2E(z8
2 =z2=)]= pA2k2(k2 −1)E(z6

2 ), (A63)

k2[v2
nE(z2

1z6
2 )+ gv2

nE(z4
1z6

2 )]= k1E(z8
2 ), (A64)

k2[a1E(z4
1z6

2 )+ a2E(z2
1z6

2 =z2=)]= pA2k2(k2 −1)E(z2
1z4

2 ), (A65)

k2[v2
nE(z4

1z4
2 )+ gv2

nE(z6
1z4

2 )]= k1E(z2
1z6

2 ), (A66)

k2[a1E(z6
1z4

2 )+ a2E(z4
1z4

2 =z2=)]= pA2k2(k2 −1)E(z4
1z2

2 ), (A67)

k2[v2
nE(z6

1z2
2 )+ gv2

nE(z8
1z2

2 )]= k1E(z4
1z4

2 ), (A68)

k2[a1E(z8
1z2

2 )+ a2E(z6
1z2

2 =z2=)]= pA2k2(k2 −1)E(z6
1 ), (A69)

k2[v2
nE(z8

1 )+ gv2
nE(z10

1 )]= k1E(z6
1z2

2 ). (A70)
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Equations (A51)–(A70) now constitute a set of equations from which damping and stiffness
parameters can be estimated, where the required expectations are replaced by sample
moments obtained from measured response data. Note that use of more equations than
unknowns, allows a least square error solution to be found [31].

It is evident from this (reduced) set of equations, that particular equations containing
stiffness parameters are uncoupled from those in which damping terms appear (a
consequence of the simplifications made earlier). Even numbered equations (A52)–(A70)
therefore contain only stiffness parameters v2

n and gv2
n—consequently simultaneous

solution of at least any two of these equations will yield explicit stiffness parameter
estimates. To obtain estimates of the damping parameters, it is evident that the odd
numbered equations (A51)–(A69) contain only parameters a1 and a2, but it is important
to note that the right hand side of each equation includes the excitation intensity term A2.
When the excitation intensity is known then explicit parameters can indeed be readily
obtained. But when the excitation intensity is not known, damping parameters can only
be obtained in terms of ratios involving A2. But if the parameters are to be directly used
for prediction in the FPK equation (namely at the same excitation level as measured data),
then use of the raw damping-to-intensity ratios (along with explicit stiffness parameters)
is sufficient to be able to make a corresponding prediction. This can be demonstrated by
direct substitution into the FPK equation, of the stiffness and damping parameters, a1A2,
a2A2, v2

n and gv2
n , as follows:

pA2 12p
1z2

2
−

1(z2p)
1z1

+
1

1z2
[{a1A2z2z2

1 + a2A2=ż2=ż2 +v2
nz1 +v2

ngz3
1}p]=0. (A71)

Now to show (by example) that the probability density function is independent of intensity
level A, write the corresponding stationary moment equations (A30) associated with FPK
equation (A71) in the form

−k1E(zk1 −1
1 zk2 +1

2 )+ k2E[(a1A2z2z2
1 + a2A2z2=z2=)(zk1

1 zk2 −1
2 )]

+k2E[(v2
nz1 + gv2

nz3
1 )(zk1

1 zk2
2 )]= pA2k2(k2 −1)E(zk1

1 zk2 −2
2 )=0. (A72)

It can be seen, for example, that a moment equation, say for the particular case, k1 =0
and k2 =2 can be written as

k2[a1A2E(z2
1z2

2 )+ a2A2E(z2
2 =z2=)+v2

nE(z1z2)+ gv2
nE(z3

1z2)]= pA2k2(k2 −1). (A73)

It is assumed that all moments in equation (A73), except E(z2
1z2

2 ), are known exactly, then
on rearranging this gives

[E(z2
1z2

2 )]=
pA2(k2 −1)− a2A2E(z2

2 =z2=)−v2
nE(z1z2)− gv2

nE(z3
1z2)

a1A2 . (A74)

Equation (A74) demonstrates that to find E(z2
1z2

2 ), the intensity level A must in general be
known. But since certain moments, such as E(z1z2) and E(z3

1z2) can be ignored since they
are either zero or are very small in comparison with other moments, equation (A74) can
be rewritten as

[E(z2
1z2

2 )]=
p(k2 −1)− a2E(z2

2 =z2=)
a1

. (A75)

Upon applying the same argument to all other appropriate moments in equation (A73),
it can be seen that these too are largely independent of the intensity level A.
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Finally solution of appropriate sets of equations (A51)–(A70) have been implemented
in sections 3 and 5 to generate empirical evidence to suggest the best sets of moment
equations to use, namely the set of second, fourth and sixth order equations. Finally to
provide least square error solutions to these (oversubscribed) equations, NAG library
routine E04FCF has been used.


